High Radioactivity Particles in Japanese House Dusts

Acknowledgments

Research support from: Safecast.org, WPI Prof. D.C. Medich, Ph.D., C.H.P., Microvision Laboratories, Jeff Ubois and the John D. and Catherine T. MacArthur Foundation, and Mr. Jun Ohnishi of Namie, Japan.

(all amended 5/19/2015 to correct mass of, and dose/risk from Nagoya hot particle)

Contact: Marco Kaltofen, MS, C. NSE, PE, (Civil, Mass.)
Dept. of Civil and Environmental Engineering
Worcester Polytechnic Institute
kaltofen@wpi.edu
Presenter disclosure:

The following personal financial relationships with commercial interests relevant to this presentation existed during the past 12 months:

General financial support was received from Jeff Ubois and the John D. and Catherine T. MacArthur Foundation.

The author discloses no additional outside funding sources or conflicts of interest.
Fuel fragmentation and dispersal

The 2011 earthquake and tsunami in Japan damaged nuclear reactors in Fukushima, Japan. Radioactively-contaminated gases, aerosols and particulate matter were released.

These radioactively-contaminated dusts settled inside homes, where residents may be exposed to dusts by contact, inhalation or ingestion.

Above: Dust from a failed fuel rod, from US NRC NUREG 2121, *Fuel Fragmentation, Relocation, and Dispersal During the Loss-of-Coolant Accident*, 3/2012
Radioactively-hot particles on the respirable size range were routinely detected in a set of 84 household and street dust samples received from Japan.

Map by Safecast.org, used by permission.
High Radioactivity Particles in Japanese House Dusts
Marco Kaltofen, Nuclear Science and Engineering

Japan dust data

Five of eighty-four dust samples had activities two or more orders above the median.

One sample had no detectable excess radioactivity except for a hot particle which had uniquely high activity.

Median activity was 2.5 Bq g\(^{-1}\)
Mean activity was 72 Bq g\(^{-1}\)
RSD = 470 % including outliers
Hot particle detection by autoradiography

Tokyo vehicle air filter image (Left) and 7 day exposure autoradiograph (Right).

Corresponding points are connected by red lines.
High Radioactivity Particles in Japanese House Dusts
Marco Kaltofen, Nuclear Science and Engineering

Hot particle sizes were < 10 um

SEM analysis showed that the majority of the radioactively-hot particles detected were 10 um or less in size, meaning that they were potentially inhalable.

NaI gamma spectrometry detected 134Cs, and 137Cs, in all dust samples with activities significantly above background.

The isotopes 60Co, 226Ra, 241Am, and/or 230Th were detected in 5 of 84 samples using SEM/EDS.
High Radioactivity Particles in Japanese House Dusts
Marco Kaltofen, Nuclear Science and Engineering

Autoradiograph of black sand shows uniform activity.

A sample of “Black Sand” was collected from Namie-machi, Futaba-gun, Fukushima Prefecture, alongside the exclusion zone fence.

It had a uniform activity of 1.5 MBq/kg of the fission products 134Cs and 137Cs.

The sample also had 300 Bq/kg of 60Co. This isotope is a neutron activation product of iron.
High Radioactivity Particles in Japanese House Dusts
Marco Kaltofen, Nuclear Science and Engineering

Black Sand sample from Namie, Japan

Contained thorium-cerium monazite crystals, 5 to 20 um, Y-Yb, and Hf-Pu-U particles, < 10 um.

Potentially nonradioactive artifacts included flakes of K-Br, 10 to 100 um, spherical W, < 10 um, Ga-As crystals, 10 um, and Cu-Sn flakes, < 30 um.
High Radioactivity Particles in Japanese House Dusts
Marco Kaltofen, Nuclear Science and Engineering

Atypically-hot particle from household dust

The excess radiation in a 0.3 kg vacuum cleaner bag dust sample from Nagoya, Japan came entirely from one particle.

The hot particle was isolated by sample division.
High activity particle is an aggregate of smaller particles.

Particle contained cesium oxides and other fission products.

The particle also contained radium and polonium, which are decay products of the original nuclear fuels.
High activity particle X-ray microanalysis results

Tellurium up to 48.0 %,
Cesium up to 15.6 %,
Rubidium up to 1.22 %,
Polonium up to 1.19 %,
Dysprosium up to 0.18 %

Individual subparticles also contained tin, radium, lead, nickel, iron, and chromium.
High Radioactivity Particles in Japanese House Dusts
Marco Kaltofen, Nuclear Science and Engineering

120X Scanning electron microscope view of hot particle.

Activity standardized against ^{137}Cs is: 2.03 ± 0.05 kBq.

This yields a potential internal dose of 1.15×10^{-3} J/yr.

(amended 5/19/2015)
Calculating activity and potential dose

The target organ is presumed to be the lung, which has a typical mass of 0.88 kg at adulthood, NIH 2014 data.

This gives a lung dose of 1.15 mGy annually, or a committed lung dose of 0.03 Sv, adjusted for decay.

Particle density = 4.2 g/cm3
Particle volume = 933 um3
Specific activity = 5.2×10^{15} Bq/kg
a.k.a. 5.2 PBq/kg.

(amended 5/19/2015)
How far did this particle travel?

The distance between the hot particle sample site and Fukushima Daiichi is 450 km.

The particle is small enough to have travelled by air, but it also can be accidentally transported on clothing or vehicles.
Calculating excess cancer risk

Using RADRAT, the National Cancer Institute Radiation Risk Assessment Tool. For a male child, age 2 years when initially exposed in 2011, with a lung exposure of 1.15 cGy per year, the mean excess lifetime cancer risk is: 0.5 per 1000.

(amended 5/19/2015)
High Radioactivity Particles in Japanese House Dusts
Marco Kaltofen, Nuclear Science and Engineering

US/Canada Sample Data

Airborne dust samples:
Positive autoradiographic results for Seattle, WA dusts
2X increase in total beta activity of air filters in March/April 2011
No detections of hot particles with Cs, Am, or Pu

Soil samples:
Max. result: 0.26 ± 0.04 Bq g⁻¹ for combined 134Cs, and 137Cs
Confirmed by USGS data (See: Wetherbee et al, 2012)

Seaweed samples:
1/45 samples positive for combined 134Cs, and 137Cs,
Positive sample collected outside Bremerton Naval Base in WA.
High Radioactivity Particles in Japanese House Dusts
Marco Kaltofen, Nuclear Science and Engineering

Seattle, WA data: 1x to 2x background for total beta in air.

Autoradiographs of quantitative 35 mm air filters
Left: March 28 to April 1, 2011 Right: April 11 to April 14, 2011
What can you do with this research?

You can measure the actual or probable radiation dose to an individual, and calculate their potential excess cancer risk.

The drawback is that you have to measure the actual intake or calculate the probability of exposure to hot particles.

In this sample set, where there is some skewness, the mean activity is significantly higher than the median activity.

In practical terms, this means that a few individuals experience a higher dose than average data would suggest.
Conclusions

Radioactively-hot particles on the respirable size range were routinely detected, with one atypically hot particle sampled 450 km from the release site.

The dust sample set mean activity was significantly higher than the median activity due to these atypically hot dust samples or individual particles.

Some individuals may actually receive a dose that is skewed higher than the mean dose calculated from average environmental data.